AMEYA设计方案——有刷电机解决方案

分享到:

有刷电机采用碳刷作为电机电源的两个触点, 利用调速转把和控制器来控制, 通过齿轮二次减速及超越离合器来达到电动自行车 0-20 公里 / 小时的无极调速。
目前采用的这种有刷高速电机含金量高, 电机减速齿轮强度较强, 耐磨性好, 设计合理, 故返修率较低;而且维修更换齿轮和电机的成本较少, 有效的降低了电动自行车的维修费用;并且有刷电机可以通过超越离合器和飞轮实现轻松人力骑行。有刷电机就是采用电刷机械换向。

1

方案概述

Ameya360 有刷电机解决方案采用机械换向,磁极不动,线圈旋转。电机的定子上安装有固定的主磁极和电刷,转子上安装有电枢绕组和换向器。直流电源的电能通过电刷和换向器进入电枢绕组,产生电枢电流,电枢电流产生的磁场与主磁场相互作用产生电磁转矩,使电机旋转带动负载。调速过程是调整电机供电电源电压的高低。
调整后的电压电流通过整流子及电刷地转换,改变电极产生的磁场强弱,达到改变转速的目的。在整流子的旋转过程中,它与电刷配合构成了数个开关,把直流电切换成几组有序的电脉冲序列,完成了 DC 转 AC 的过程,这就是逆变; 变频:既是改变开关地切换速率,切换速率越高频率就越高,反之亦然。有刷马频率的变换是随电机转速的变换而变换的具有结构简单、开发时间久、技术成熟等特点。

2

继续阅读
锂电池内阻揭秘:技术原理深度解析

锂电池的内阻是影响其性能和使用寿命的关键因素,通过IMP内阻技术可以精确测量。该技术基于充放电过程中的电压和电流变化关系推算内阻,并考虑温度、充放电状态等因素。电池的结构设计、原材料性能、制程工艺以及工作环境和使用条件均会影响锂电池内阻。极耳布局、隔膜结构、电极材料性能、制程工艺控制精度以及温度等因素共同决定了内阻的大小。

锂电池隔膜击穿:原因与影响因素全解析

锂电池隔膜击穿电压是电池安全性的关键指标,涉及隔膜材料、厚度、孔隙率及制作工艺等因素。优质的隔膜应具有高绝缘性能和机械强度,能承受大电场强度而不被击穿。在实际应用中,需严格测试和控制隔膜击穿电压,通过优化设计和工艺提升电池安全性。

高边驱动革新:BMS性能提升的关键所在

随着电动汽车和储能系统的快速发展,BMS中高边驱动的性能要求日益提升。未来,高边驱动将朝更高精度、更稳定及智能化的方向发展,通过集成先进传感器和算法实现精细充放电控制,并与其他系统协同工作提升整体效率与安全性。新材料和新工艺的应用将推动高边驱动技术创新,提高效率和可靠性。安全性和可靠性始终是核心,需加强安全防护和可靠性设计。

BMS高边驱动:原理揭秘与应用挑战探析

BMS作为电池管理的重要部分,高边驱动是其关键组件,通过控制电池正极开关实现充放电过程的精确控制。高边驱动需应对电池复杂特性、高电压大电流挑战,并解决散热和电磁干扰问题。同时,高边驱动设计需考虑电池包与ECU共地问题,确保通信正常。高边驱动的性能直接影响电池系统整体运行效果,需不断优化设计以满足电池管理需求。

BMS低边驱动:原理揭秘、技术创新与未来展望

BMS中的低边驱动原理主要控制电池负极端的通断,通过功率MOSFET和相关控制电路确保电池充放电过程的安全与高效。其设计简单、成本低廉,但通信时需隔离措施。未来,低边驱动将更智能化、集成化,注重安全性与能效优化,同时模块化、标准化也将成为发展趋势,以适应BMS市场的不断扩大和多样化需求。