业界最快trr性能的600V超级结MOSFET PrestoMOS

分享到:

<概要>

全球知名半导体制造商ROHM的高速trr※1型600V 超级结MOSFET PrestoMOS※产品群又新增"R60xxMNx系列",非常适用于要求低功耗化的白色家电及工业设备等的电机驱动。PrestoMOS是拥有业界最快trr性能的功率MOSFET,以业界最小的开关损耗著称。因使搭载变频器的白色家电的功耗更低而获得高度好评。

1

此次开发的"R60xxMNx系列"通过优化ROHM独有的芯片结构,在保持PrestoMOS"高速trr性能"特征的基础上,还成功地使Ron※2和Qg※3显著降低。由此,在变频空调等电机驱动的应用中,轻负载时的功率损耗与以往的IGBT相比,降低约56%,节能效果非常明显。

不仅如此,"R60xxMNx系列"利用ROHM多年积累的模拟技术优势,还实现了超强的短路耐受能力,减轻了因电路误动作等导致的异常发热带来的破坏风险,有助于提高应用的可靠性。

本系列产品已于2016年12月份开始以月产10万个规模投入量产,前期工序的生产基地为ROHM Apollo Co., Ltd.(日本福冈县),后期工序的生产基地为ROHM Semiconductor (Korea) Co., Ltd.(韩国)。

今后,ROHM将继续开发凝聚了ROHM模拟设计技术优势的高性能、高可靠性产品,不断为社会的进一步节能贡献力量。

<背景>

近年来,节能化趋势日益加速,随着日本节能法的修订,家电产品倾向于采用更接近实际使用情况的能效标识APF(Annual Performance Factor)※4,不再仅仅关注功率负载较大的设备启动时和额定条件下的节能,要求负载较小的正常运转时更节能的趋势日益高涨。据称,在全球的电力需求中,近50%被用于驱动电机,随着空调在新兴国家的普及,全球的电力局势逐年严峻。在这种背景下,ROHM开发出PrestoMOS,非常适用于要求低功耗化的空调等白色家电和工业设备等的电机驱动,可大大降低应用正常运转时的功耗,满足了社会的节能需求。

23

<特点>

1. 业界最快的trr性能、低Ron、低Qg,有助于应用节能

一般MOSFET具有高速开关和低电流范围的传导损耗低的优点,设备正常运转时可有效降低功耗。"R60xxMNx系列"利用ROHM独有的Lifetime控制技术,不仅保持了业界最快trr性能,而且Ron和Qg更低,非常有助于变频电路的节能。

4

2. 超强短路耐受能力,确保可靠性

通常,一旦发生短路,即具有电路误动作、流过超出设计值的大电流、引起异常发热、甚至元件受损的可能性。一直以来,因性能与短路之间的制约关系,确保超强的短路耐受能力是非常困难的,而"R60xxMNx系列"利用ROHM的模拟技术优势,对热失控的成因---寄生双极晶体管成功地进行了优化,可确保电机驱动所必须的短路耐受能力,有助于提高应用的可靠性。

5

3. 自导通损耗微小

自导通是指MOSFET在关断状态下,高边主开关一旦导通,则低边MOSFET的漏极-源极间电压急剧增加,电压被栅极感应,栅极电压上升,MOSFET误动作。该现象使MOSFET内部产生自身功率损耗。而"R60xxMNx系列"通过优化寄生电容,可将该损耗控制在非常微小的最低范围内。

<应用>

空调、冰箱、工业设备(充电站等)

6

继续阅读
BMS低边驱动:原理揭秘、技术创新与未来展望

BMS中的低边驱动原理主要控制电池负极端的通断,通过功率MOSFET和相关控制电路确保电池充放电过程的安全与高效。其设计简单、成本低廉,但通信时需隔离措施。未来,低边驱动将更智能化、集成化,注重安全性与能效优化,同时模块化、标准化也将成为发展趋势,以适应BMS市场的不断扩大和多样化需求。

高边驱动革新:BMS性能提升的关键所在

随着电动汽车和储能系统的快速发展,BMS中高边驱动的性能要求日益提升。未来,高边驱动将朝更高精度、更稳定及智能化的方向发展,通过集成先进传感器和算法实现精细充放电控制,并与其他系统协同工作提升整体效率与安全性。新材料和新工艺的应用将推动高边驱动技术创新,提高效率和可靠性。安全性和可靠性始终是核心,需加强安全防护和可靠性设计。

BMS高边驱动:原理揭秘与应用挑战探析

BMS作为电池管理的重要部分,高边驱动是其关键组件,通过控制电池正极开关实现充放电过程的精确控制。高边驱动需应对电池复杂特性、高电压大电流挑战,并解决散热和电磁干扰问题。同时,高边驱动设计需考虑电池包与ECU共地问题,确保通信正常。高边驱动的性能直接影响电池系统整体运行效果,需不断优化设计以满足电池管理需求。

反馈光耦经典连法揭秘,创新引领未来!

反馈光耦通过光电转换实现电路的稳定可靠反馈控制,在电机控制、开关电源、通信和计算机等领域有广泛应用。未来,反馈光耦将朝着高速化、高精度化和智能化方向发展,以满足不断提升的数据传输和测量控制需求,同时融入智能化系统提升系统稳定性。

光耦原理揭秘:光电转换,隔离稳定新科技

光耦是一种基于光学原理的电子元器件,通过电信号到光信号再到电信号的转换实现电气隔离。其内部发光器件和光敏器件协同工作,实现信号转换。光耦具有优异的隔离性能、稳定性和可靠性,以及抗电磁干扰能力,广泛应用于通信、电力、自动化控制等领域。其高效、高精度、易连接等特点,使其在各种复杂应用场景中发挥重要作用。