ROHM开发出业界顶级※的低噪声CMOS运算放大器“LMR1802G-LB”

分享到:

<概要>

全球知名半导体制造商ROHM(总部位于日本京都)面向处理微小信号的光传感器、声纳及硬盘中使用的加速度传感器等需要高精度感测的工业设备应用,开发出业界顶级的低噪声CMOS*1运算放大器“LMR1802G-LB”

1

LMR1802G-LB融合ROHM的“电路设计”、“工艺”、“布局”三大模拟技术优势开发而成,是一款等效输入电压噪声密度(以下简称“噪声性能”)仅为市场流通产品(以下简称“传统产品”)的1/2左右(1kHz 时2.9nV/√Hz,10Hz 时7.8nV/√Hz)、低噪声性能具有绝对优势、传感器信号检测性能显著提升的运算放大器。另外,与低噪声性能呈矛盾关系的相位裕量和容性负载驱动也分别实现了业界顶级性能(相位裕量68°,容性负载500pF),还是一款具备业界顶级的低噪声性能,并具有卓越的稳定性(不易振荡,易于操作)的运放产品。这使得准确地放大仅几µV的电压也成为可能,非常有助于促进需要高精度感测的工业设备以及家电发展。

本产品从2018年6月开始出售样品(样品价格:500日元/个,不含税),预计于2018年10月开始暂以月产50万个的规模投入量产。前期工序的生产基地为ROHM Hamamatsu Co.,Ltd.(日本滨松市),后期工序的生产基地为ROHM Integrated Systems (Thailand) Co., Ltd.。同时,新产品在AMEYA360、Right IC、Mouser开始网售。

未来ROHM还会将低噪声运算放大器开发技术应用到本公司的其他产品中,不断为实现应用的更高精度和系统的更高可靠性贡献力量。

<背景>

近年来,随着IoT的普及,为实现更高性能并进行高级控制,包括移动设备在内,汽车、工业设备等所有应用中均搭载了诸多传感器。传感器是将各种环境、物理变化转换为信号的元器件,要求具备高精度,而同时在节能化(省电化)的大趋势下,传感器外围电路的电压呈日益降低趋势。

另一方面,运算放大器被配置于传感器后端,用来将传感器输出信号放大,传感器输出多为微小的模拟信号,为了高精度地传输信号,对运算放大器自身的噪声要求已经越来越严苛。

ROHM通过发挥模拟设计技术和独有的工艺等垂直统合型生产体制优势,去年面向车载市场开发出超强抗噪声(抗外部噪声性能优异)运算放大器,此次则面向工业设备及家电等领域开发出业界顶级的低噪声(电子电路产生的噪声少)运算放大器。

 2

<特点详情>

1.低噪声且更易用,业界顶级性能的低噪声CMOS运算放大器

新产品作为融合ROHM的“电路设计(差分输入级新电路)”、“布局(多年积累的模拟布局)”、“工艺(为了低噪声而优化)”三大模拟技术优势开发而成的低噪声CMOS运算放大器,等效输入电压噪声密度实现1kHz 时2.9nV/√Hz、10Hz 时7.8nV/√Hz,与市场流通品相比,噪声量仅为1/2左右,低噪声性能具有绝对优势。

3

另外,以往在追求运算放大器的低噪声性能时,存在相位裕量和容性负载特性恶化、容易振荡等电路设计方面的难题。而ROHM通过在运算放大器的差分输入级采用新电路,不仅实现了业界顶级的低噪声性能,还同时实现了业界顶级的68°相位裕量和500pF容性负载驱动。

这使得传感器信号检测性能显著提升(例如提高至传统产品的2倍等),仅几µV的电压也可准确地放大,非常有助于以“高精度”为关键词的搭载传感器的设备实现更高性能。

2.引发误差的输入失调电压和输入偏置电流也力求极小化

运算放大器当输入电压为0V时输出电压应为0V,不过因其结构方面的原因将产生失调电压而出现误差。另外,当传感器输出的阻抗较高时,如果运算放大器的输入偏置电流较大,则将影响到传感器输出电压。这两个特性作为导致运算放大器误差的主要因素,要求其值要尽量小。

4

新产品的输入失调电压仅为450µV(传统产品的1/4),输入偏置电流仅为0.5pA(传统产品的1/2),从减少误差的角度看也可实现高精度放大。

<应用示例>

搭载声纳和光传感器的测距设备
安保设备、红外线遥控器及夜视装置等搭载红外传感器的设备
硬盘等精密工作设备
流量计、气体检测仪等设备管理装置
其他搭载传感器并需要高精度检测的工业设备、消费电子设备

继续阅读
探索未来斩波运放共模抑制比趋势与特是什么?

斩波运放共模抑制比作为评价运算放大器性能的关键指标,其重要性不言而喻。未来发展方向包括提高共模抑制比、增强其稳定性,并适应新兴技术领域的需求。为实现这些目标,需深入研究优化内部结构、工作机制,以及斩波频率与调制方式。同时,关注环保和可持续性,降低能耗和污染。

如何优化共模抑制比?这些技巧你不能错过!

斩波运放的共模抑制比(CMRR)是衡量其对共模信号抑制能力的关键参数。内部电路设计、元件匹配度及质量、斩波与解调电路性能、电源与偏置电路稳定性、反馈电路设计以及电路板布局与接地等因素均对共模抑制比产生重要影响。优化这些因素可提高共模抑制比,确保斩波运放输出信号的稳定性和准确性,进而提升其在各种应用场合的性能表现。

斩波运放技术揭秘:共模抑制比原理与技术探索

摘要:降低共模信号的干扰。共模信号如同捣乱的孩子,混入有用信号中造成干扰。斩波运放利用内部特殊电路结构将共模信号“斩”掉,确保输出信号的质量和稳定性。高共模抑制比的斩波运放如同经验丰富的守门员,能够轻松应对复杂信号干扰,保障信号传递的准确性。

地感应运算放大器:差分信号放大的精准利器(上)

地感应运算放大器(仪表放大器)专门用于差分信号的放大,通过差分输入方式有效抑制共模信号,适用于需抑制地电位噪声等干扰的场景。其内部结构具有高输入阻抗和低输出阻抗特点,可减少对信号源的影响并有效传输放大信号。通过调整电阻比例可改变增益,适应不同信号幅度需求。

电池耗电量显著减少!ROHM开发出静态电流超低的运算放大器

全球知名半导体制造商ROHM(总部位于日本京都市)开发出静态电流超低的线性运算放大器“LMR1901YG-M”。该产品非常适用于传感器信号放大用途,比如在电池等内部电源供电的设备中检测和测量温度、流量、气体浓度等应用。