全球首发!※ROHM开发出高音质音响用电源IC"BD372xx系列"

分享到:

<概要>

全球知名半导体制造商ROHM面向适合播放高分辨率音源*1)的Hi-Fi(高保真)音响*2)等所有要求音质的音响设备,开发出为设备中搭载的音频器件供电的高音质音响用电源IC「BD372xx 系列」(BD37201NUX / BD37210MUV / BD37215MUV)。

10

「BD372xx 系列」是全球首款高音质音响用电源IC,融合ROHM多年积累的电源IC模拟设计技术与独创的音质设计技术优势开发而成。产品采用新开发的高速响应误差放大电路和低噪声结构,并通过听感评估,优化了开发与生产过程中影响音质的参数,以实现最佳音质。音响设备的电源要具备的所有重要特性(电压稳定性,噪声级别,正负电源的对称性)均达到了业界顶级性能。与以往搭载在音响设备中的电源IC相比,可提供极其清洁的电力,在高音质需求日益高涨的音响市场上,可通过电源线提高诸如声像(音源的位置,距离感)和分辨率(现场感和深度感)等所有音响设备要求的音质。

本产品已于2018年1月开始出售样品(样品价格2000日元/个:不含税),并预计于2018年6月开始以每月10万个的规模投入量产。前期工序的生产基地为ROHM滨松株式会社(滨松市),后期工序的生产基地为ROHM Electronics Philippines, Inc.(菲律宾)。

今后,ROHM将继续扩充采用音质设计技术的产品阵容,满足时代的高音质需求。

<背景>

近年来,随着高分辨率音源的普及,要求音响设备和组成设备的音频器件对于音源原本的信息量具有准确的表现力。其中,给音频器件供电的电源品质对音质影响较大,而电源IC发挥着提供电压波动小、噪声小的清洁电力的重要作用。而且,要实现清洁的电力供给,需要三大重要特性(电压稳定性,噪声级别,正负电源的对称性)都很优异,然而以往并没有那样的电源IC,这已成为实现高音质的重大课题。

此次,ROHM凝聚融入了本公司电源系统工艺的电源IC模拟设计技术和独创的音质设计技术优势,成功地开发出世界首款三个重要特性都很优异的高音质音响用电源IC。

11

12

 

<特点>

本产品作为全球首款高音质音响用电源IC,具有以下特点。

1.供给清洁的电力,有助于提高音响设备的音质

13

1)电压更稳定,音质更高

内置新开发的可在更宽频段高速响应的误差放大器电路,将输入电压和输出电流波动对输出电压的影响降到最低。可完美呈现音源原本的低音量感与气魄。

14

2)噪声更小,音质更高

采用可抑制IC内部电路产生的噪声的低噪声结构,实现仅为以往产品1/50左右的4.6µVrms低噪声(业界最低级别)。通过消除噪声对音质的影响,来呈现高透明度的清晰声音。

3)正负电源对称,音质更高

ROHM不仅有正电源,还同时拥有电路结构一致的负电源产品,通过两者组合使用,在特性方面实现了具有理想对称性的电源供给。可明确声像定位,并可很好地表现声音的空间传播力。

2.产品阵容丰富,可满足高音质音响的需求

15

产品阵容包括:非常适用于在低电压下工作的数字器件(DA转换器、DSP等)的BD37201NUX、非常适用于在高电压或正负两个电源下工作的模拟器件(声音处理器、电流-电压转换放大器等)的BD37210MUV(正电源)和BD37215MUV(负电源)。未来还会在这些产品的基础上继续扩充产品阵容,强有力地支持音响设备的高音质化发展。

产品型号 功能 输入电压 输出电压 输出电流 噪声级别 线路瞬态电压 PSRR 封装
BD37201NUX 低电压输入,小号封装 2.7V ~ 5.5V 1.0V ~ 4.5V 500mA 4.72µVrms
(10Hz~100kHz)
3mV
(1.0V/µsec)
90dB (1kHz)
50dB≦(10Hz~1MHz)
VSON008X2030
(2.00 x 3.00mm)
BD37210MUV 高电压输入,正电源型 3.0V ~ 16.0V 1.0V ~ 15.0V 1000mA 4.60µVrms
(10Hz~100kHz)
3mV
(1.0V/µsec)
78dB (1kHz)
50dB≦(10Hz~1MHz)
VQFN020V4040
(4.00 x 4.00mm)
BD37215MUV 高电压输入,负电源型 -16.0V ~ -3.0V -15.0V ~ -1.0V -1000mA 5.10µVrms
(10Hz~100kHz)
3mV
(1.0V/µsec)
90dB (1kHz)
50dB≦(10Hz~1MHz)
VQFN020V4040
(4.00 x 4.00mm)

 

<应用例>

◇Hi-Fi音响 ◇家庭音响  ◇便携式音响 ◇无线扬声器
等需要高音质的所有音响设备

<术语解说>

*1)高分辨率音源(High-resolution Sound Source)
一般音乐用CD播放的音乐采样频率为44.1kHz,量化位数为16bit,而高分辨率音源的采样频率96kHz以上、量化位数24bit以上较为普遍。即高分辨率音源的信息量比普通音乐CD多得多,因而可实现高音质。
*2) Hi-Fi(High Fidelity,高保真)音响
High Fidelity意为高保真。是指旨在忠实地再现音源原本信息的高音质音响。

 

继续阅读
BMS低边驱动:原理揭秘、技术创新与未来展望

BMS中的低边驱动原理主要控制电池负极端的通断,通过功率MOSFET和相关控制电路确保电池充放电过程的安全与高效。其设计简单、成本低廉,但通信时需隔离措施。未来,低边驱动将更智能化、集成化,注重安全性与能效优化,同时模块化、标准化也将成为发展趋势,以适应BMS市场的不断扩大和多样化需求。

高边驱动革新:BMS性能提升的关键所在

随着电动汽车和储能系统的快速发展,BMS中高边驱动的性能要求日益提升。未来,高边驱动将朝更高精度、更稳定及智能化的方向发展,通过集成先进传感器和算法实现精细充放电控制,并与其他系统协同工作提升整体效率与安全性。新材料和新工艺的应用将推动高边驱动技术创新,提高效率和可靠性。安全性和可靠性始终是核心,需加强安全防护和可靠性设计。

BMS高边驱动:原理揭秘与应用挑战探析

BMS作为电池管理的重要部分,高边驱动是其关键组件,通过控制电池正极开关实现充放电过程的精确控制。高边驱动需应对电池复杂特性、高电压大电流挑战,并解决散热和电磁干扰问题。同时,高边驱动设计需考虑电池包与ECU共地问题,确保通信正常。高边驱动的性能直接影响电池系统整体运行效果,需不断优化设计以满足电池管理需求。

反馈光耦经典连法揭秘,创新引领未来!

反馈光耦通过光电转换实现电路的稳定可靠反馈控制,在电机控制、开关电源、通信和计算机等领域有广泛应用。未来,反馈光耦将朝着高速化、高精度化和智能化方向发展,以满足不断提升的数据传输和测量控制需求,同时融入智能化系统提升系统稳定性。

光耦原理揭秘:光电转换,隔离稳定新科技

光耦是一种基于光学原理的电子元器件,通过电信号到光信号再到电信号的转换实现电气隔离。其内部发光器件和光敏器件协同工作,实现信号转换。光耦具有优异的隔离性能、稳定性和可靠性,以及抗电磁干扰能力,广泛应用于通信、电力、自动化控制等领域。其高效、高精度、易连接等特点,使其在各种复杂应用场景中发挥重要作用。